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Received 31 October 1996, in final form 15 May 1997

Abstract. We introduce a technique for calculating quasibound states of a weakly quantized
system for which the energy spectrum is non-degenerate and unbounded, above and below.
Quasibound states are true stationary states continuously connected with the system bound states
by the growth of some parameter. The quasibound state description is found to be unique among
the many representations possible for such weakly quantized systems; all other accounts involve
decaying (non-stationary) states. In the context of electric fields, examination of the quasibound
states leads to an improved understanding of electrical breakdown in matter. In particular, we
argue that quasibound states cease to exist for electric fields larger than some critical valueEB—
identified with the breakdown field—and that their disappearance is accompanied by a dipole
moment which diverges at breakdown as(EB − E)−1/2.

1. Introduction

The behaviour of a particle bound to a potential well and subjected to the force of a uniform
field (electric, gravitational, etc) contains the seeds of a number of interesting and important
phenomena. Because the potential energy of auniform field is singular at infinity, the
application of a uniform electric field, however weak, creates a potential barrier through
which particles can tunnel to escape the attraction of the binding force. This tunnel effect
is very small for weak fields. Oppenheimer [1], using an approximate method, estimates
that hydrogen atoms dissociate by this mechanism at an astonishingly small rate: 1 in 10γ s,
whereγ = 1010 in a field of 1 V cm−1! However, the escape probability, being governed
by the transparency of the potential barrier, is strongly field dependent. Zener [2] realized
this feature could account for the sudden breakdown of solid dielectrics. In a typical case,
he showed that the leakage rate increases as much as one hundred-fold when the field
intensifies from 1.0× 106 V cm−1 to 1.1× 106 V cm−1.

In the language of stationary states this ‘leakage’ results in a continuum of energy levels.
Nearly all the wavefunctions are delocalized, representing unbound states. But embedded in
this continuum are special levels, calledquasidiscrete, for which the wavefunctions, known
as quasibound, are concentrated in the vicinity of the potential well. Systems giving rise
to such states are said to beweakly quantized. The quasibound states, being part of a
continuum, are unstable; the slightest disturbance will cause them to decay to an unbound
state via a radiationless transition. From this viewpoint, Zener breakdown can be ascribed to
the large-scale onset of radiationless decay with increasing field. But what of the quasibound
states themselves? What happens tothem as the field intensifies? We know these states
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must be continuously connected to the true bound states by the growth of the field term, so
that in weak fields they may be studied using perturbation theory. But with increasing field
we meet an unforgiving obstacle: invariably, our perturbation series turns out to be merely
asymptotic, and not convergent. This asymptotic nature constitutes a fundamental block to
our understanding, beyond which we seemingly cannot penetrate. How, then, do we single
out for study the quasibound states in arbitrarily strong fields? In section 2, we provide
a surprisingly simple answer to this question for weakly quantized systems in one space
dimension. Some consequences, especially for electrical breakdown, are explored, first for
a specific model in section 3, and then in a more general context in section 4. In section 5,
we summarize the key results and speculate on possible avenues for future work.

2. Quasidiscrete structure and the associated Green’s function

In this section we recast Schrödinger’s equation for a weakly quantized system as an integral
equation. The division between the homogeneous and inhomogeneous versions of this
equation will lead us to a description of the quasibound states well beyond the perturbation
regime. Results will be given in the context of a uniform electric field, though the method
itself transcends any specific application and will be presented so as to emphasize this
generality.

The problem may be posed quite generally as follows: we wish to find states of the
quasibound variety which satisfy the single-particle Schrödinger equation

(H0+ V )|9E〉 = E|9E〉 (1)

H0 includes the kinetic energy, along with the field term giving rise to weak quantization.
Accordingly, we take the spectrum ofH0 to be continuous and non-degenerate.V is
the binding potential, presumed strong enough to support one or more bound states, and
compact, so that the spectrum ofH = H0+ V is also continuous and non-degenerate. For
a chargeq in a uniform electric fieldE,H0 = p2/2m−qEx, andV (x) can be any potential
which vanishes at infinity. Another important example arises in studying vibrations about a
point of stable equilibrium. The first term beyond the harmonic approximation is cubic in
the displacement. To describe thisanisotropicoscillator we takeH0 = p2/2m + Cx3 and
V (x) = mω2x2/2.

We now denote by|E〉 the eigenstates ofH0. These may be taken orthonormal,
〈E′|E〉 = δ(E′ − E), and constitute a complete set of states. From them we construct
Fourier-transformed states as

|τ 〉 = 1√
2π

∫ ∞
−∞

dE e−iEτ |E〉. (2)

These are also orthonormal〈τ ′|τ 〉 = δ(τ ′ − τ), and form a new basis with the property

H0|τ 〉 = i
d

dτ
|τ 〉. (3)

Projecting equation (1) onto this basis gives an integro-differential equation for theτ -space
wavefunction9E(τ ) = 〈τ |9E〉:(

E + i
d

dτ

)
9E(τ ) =

∫ ∞
−∞

dτ ′〈τ |V |τ ′〉9E(τ
′).

With the help of the integrating factor exp(−iEτ), we can integrate this result over the
interval (τ0, τ ) to obtain

9E(τ ) = eiE(τ−τ0)9E(τ0)+
∫ ∞
−∞

dτ ′9E(τ
′)
[

1

i

∫ τ

τ0

dτ ′′eiE(τ−τ ′′)〈τ ′′|V |τ ′〉
]
. (4)
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Equation (4) can be cast in a more familiar form by introducing a Green’s function
GE(τ, τ

′′; τ0) according to the rules

GE(τ, τ
′′; τ0) = −ieiE(τ−τ ′′) τ0 6 τ ′′ 6 τ
= + ieiE(τ−τ ′′) τ 6 τ ′′ 6 τ0

= 0 otherwise. (5)

We now use GE(τ, τ
′′; τ0) to define matrix elements of an operatorGE(τ0) as

GE(τ, τ
′′; τ0) = 〈τ |GE(τ0)|τ ′′〉. Then the bracketed expression in equation (4) becomes

〈τ |GE(τ0)V |τ ′〉 and the integral on the right reduces to〈τ |GE(τ0)V |9E〉. Finally, noting
that exp(iEτ) = (2π)1/2〈τ |E〉, we recover the Hilbert space version of equation (4):

|9E〉 = |E〉(
√

2πe−iEτ09E(τ0))+GE(τ0)V |9E〉. (6)

Equation (6) is the desired integral equation formulation of the original Schrödinger
equation. The non-uniqueness of the procedure is reflected in the parameterτ0, which may
be any real number. Also, the derivation suggests (correctly) that9E(τ0) is indeterminate;
indeed,9E(τ0) reflects a choice of normalization which leads naturally to a division of
states into two distinct categories. Fortype 1states,9E(τ0) 6= 0 and the bracketed factor in
equation (6) can be absorbed into the definition of|9E〉 to give the inhomogeneous equation

|9E〉 = |E〉 +GE(τ0)V |9E〉. (7)

Type 2states are characterized by9E(τ0) = 0, and satisfy the homogeneous equation

|9E〉 = GE(τ0)V |9E〉. (8)

This decomposition depends on the value adopted forτ0 through the Green’s operator
GE(τ0) but for everyτ0 the classification is at once mutually exclusive and complete, i.e.
a given state iseither type 1 or type 2, andall states are so classified. We will see that
different choices forτ0 lead to alternative descriptions of what is evidently the same physical
system, implying thatτ0 is a representation label:each value taken byτ0 defines a distinct
representation of the weakly quantized system. Within a representation, type 1 and type 2
states differ markedly in their physical characteristics. In particular, it is the type 2 states
alone that vanish withV ; alternatively, these must originate with the binding potential.
Accordingly, the quasibound states we seek will be found in the type 2 class.

The argument still leaves open the question of how to fixτ0. Now all stationary states
of H (or, for that matterH0) have Schr̈odinger wavefunctions〈x|9E〉 that are real-valued,
apart from an overall phase. It follows that〈E|9E〉 may be taken as real. But the type 2
class condition9E(τ0) = 0 requires (cf equation (2))∫ ∞

−∞
dEeiEτ0〈E|9E〉 = 0.

For τ0 6= 0 the left-hand side has real and imaginary parts, and both must vanish. This
represents one condition too many, suggesting that no type 2 stationary states exist in this
case. However,the choiceτ0 = 0 does admit stationary states of the type 2 class, and these
must be the quasibound states. To obtain them, we solve the homogeneous equation (8)
with the Green’s operatorGE(0); equivalently, the quasibound states satisfy the Schrödinger
equation (1) subject to the added constraint∫ ∞

−∞
dE〈E|9E〉 = 0. (9)
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We turn now to an investigation of the Green operatorGE(τ0). From the definition of
GE(τ0), we have the formal representation

GE(τ0) =
∫ ∞
−∞

dτ
∫ ∞
−∞

dτ ′|τ 〉GE(τ, τ
′; τ0)〈τ ′|.

Substituting equation (5) forGE(τ, τ
′; τ0) gives

GE(τ0) = i

[∫ ∞
−∞

dτ
∫ τ0

−∞
dτ ′ −

∫ ∞
−∞

dτ ′
∫ ∞
τ ′

dτ

]
eiE(τ−τ ′)|τ 〉〈τ ′|

= i
∫ τ0

−∞
dτ ′ e−iEτ ′

∫ ∞
−∞

dτ eiEτ |τ 〉〈τ ′| +GE(−∞)

= i
√

2π |E〉
∫ τ0

−∞
dτ e−iEτ 〈τ | +GE(−∞). (10)

Here GE(−∞) symbolizes the Green’s operator in the limit asτ0 approaches negative
infinity:

GE(−∞) = −i
∫ ∞
−∞

dτ ′
∫ ∞
τ ′

dτ eiE(τ−τ ′)|τ 〉〈τ ′|.

This can be put in a most illuminating form by appealing to equation (3) and invoking the
closure property of the basis to obtain

GE(−∞) = −i
∫ ∞

0
dτeiEτ

∫ ∞
−∞

dτ ′ |τ + τ ′〉〈τ ′|

= − i
∫ ∞

0
dτ eiEτe−iH0τ

∫ ∞
−∞

dτ ′|τ ′〉〈τ ′|

= − i
∫ ∞

0
dτ eiEτe−iH0τ . (11)

We see thatGE(−∞) is just the Laplace transform of the ‘bare’ propagator exp(−iH0τ),
and thus is especially suited to describing the evolution of quantum states in cases when the
field term is switched on abruptly. For uniform electric fields, this is the Green’s operator
studied previously by Lukes and Somaratna [3], and Moyer [4]; it leads to type 2 states
with complex energiesE, and a decaying state picture of the weakly quantized system.

To recover quasibound states, we require the Green’s operator that results from taking
τ0 = 0:

GE(0) = i
√

2π |E〉
∫ 0

−∞
dτe−iEτ 〈τ | +GE(−∞).

The coordinate space matrix elementsGE(x, x
′; 0) = 〈x|GE(0)|x ′〉 are calculated from

GE(x, x
′; 0)−GE(x, x

′; −∞) = i
√

2π〈x|E〉
∫ 0

−∞
dτe−iEτ 〈τ |x ′〉.

In the context of uniform fields,GE(x, x
′; 0) can be given in closed form. For a uniform

electric fieldE the stationary states〈x|E〉 are the Airy functions Ai [5]: up to an overall
phase, we have

〈x|E〉 = α√
qE

Ai(−z) (12)
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with z = α(x +E/qE) andα = (2mqE/h̄2)1/3. Further, from the integral representation of
Ai [6] and the inverse of equation (2), we infer

〈x|τ 〉 =
√
qE
2π

exp

(
iqExτ − i

h̄2

6m
(qE)2τ 3

)
. (13)

Using equations (12) and (13), it is a straightforward matter to show that

GE(x, x
′; 0)−GE(x, x

′; −∞) = α2

|qE |Ai(−z)[iπAi(−z′)− E0(z
′)] (14)

where z′ = z(x ′). E0 is a generalized Airy function [7]†; it is real-valued and bounded
for all real values of its argument. When equation (14) is added to the closed form for the
Green’s functionGE(x, x

′; −∞) given in [4], we obtainGE(x, x
′; 0):

GE(x, x
′; 0) = − α2

|qE |e0(z
′)Ai(−z) z 6 z′

= − α2

|qE | [E0(z
′)Ai(−z)+ πAi(−z′)Bi(−z)] z > z′. (15)

Bi is the Airy function companion to Ai (the second independent solution to Airy’s equation),
ande0(z) = E0(z)+πBi(−z) is yet another generalized Airy function. The Green’s function
of equation (15) was first proposed by us in 1970, following a somewhat obscure and less
inclusive approach [8].

It is no accident thatGE(x, x
′; 0) is a real-valued function, as can be seen by writing

the homogeneous equation (8) in the coordinate basis (now withτ0 = 0):

9E(x) =
∫ ∞
−∞

dx ′GE(x, x
′; 0)V (x ′)9E(x

′). (16)

With GE(x, x
′; 0) real, equation (16) admits stationary-state (quasibound) wavefunctions

9E(x) with real (quasidiscrete) energiesE. Furthermore, no choice other thanτ0 = 0 leads
to a Green’s function with this property. Suppose in contrast thatτ1 6= 0 also resulted in a
real-valued Green’s functionGE(x, x

′; τ1). Then, from equation (10), the difference

GE(x, x
′; τ1)−GE(x, x

′; 0) = i
√

2π〈x|E〉
∫ τ1

0
dτe−iEτ 〈τ |x ′〉 (17)

would have to be real for all values ofx andx ′. But equations (12) and (13) indicate that
the right-hand side of equation (17) has an imaginary part proportional to∫ τ1

0
dτcos

[
(qEx ′ + E)τ − h̄2

6m
(qE)2τ 3

]
. (18)

For all τ1 6= 0, this integral defines an analytic function ofx ′ (having only isolated zeros);
thus, the supposition that bothGE(x, x

′; τ1) andGE(x, x
′; 0) are everywhere real must be

false. We conclude thatthe Green’s function of equation (15), when used with equation (16)
affords a description of the quasibound states in uniform fields of any strength.

One final remark concerning uniqueness is in order. We know that any Green operator
GE for H0 must satisfy

(E −H0)GE = 1 (19)

for equations (7) and/or (8) to be valid. Assuming a solutionGE can be found which
meets the usual boundedness and continuity conditions, it is often not unique. Another

† These are related to the functions Gi, Hi introduced in [6] by the formulasE0(z) = −πGi(−z); e0(z) = πHi(−z).
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Green’s operator with the same properties can be constructed asGE + |E〉〈0|, where|E〉
is an eigenstate ofH0 and〈0| is anarbitrary state. For true bound states (having discrete
energies) this poses no problem because we are interested inGE at the perturbed energies
only, andE would almost never be an eigenvalue of bothH0 andH = H0+V . The same
cannot be said for the quasibound states of weakly quantized systems, where even requiring
real-valued matrix elements〈x|GE|x ′〉 clearly does not limit the choice to a singleGE.
This uniqueness problem, as reflected in the state〈0|, is compounded by the observation
that—at least for uniform fields—the unperturbed eigenstate|E〉 is asymptotically small to
all orders in the field parameter! Thus, further requiringGE to reproduce the results of
perturbation theory toany order still does nothing to mitigate the non-uniqueness inherent
in this approach.

By comparison, equation (10) effectively limits〈0| to

〈0| = i
√

2π
∫ τ0

−∞
dτe−iEτ 〈τ |. (20)

The limitation imposed by equation (20) has subtle origins going back to equation (6),
where it appears as the bracketed term so essential for enforcing the type 1–type 2 state
classification that distinguishes the quasibound states from the pack. The suggestion is
simply this: there are a restricted number of ways to represent a weakly quantized system
that rigorously preserve the identity of quasibound states as the system parameters are varied.
These ways are indexed here by the (continuous) labelτ0; equivalently, we may say that each
value of τ0 generates a proper representation of the weakly quantized system. But again,
only τ0 = 0 results in true quasibound states, i.e. stationary states having real energies.

The expected connectivity of the quasibound states defined by equation (16) to the
bound states ofV (x) is verified for the example of section 3; further, the behaviour in
strong fields of the quasibound state found there will lead us to an unambiguous definition
of electrical breakdown at the microscopic level.

3. Quasibound state of the delta function well

The understanding of new concepts traditionally begins with the study of idealized
approximations to reality which, though crude, yield to the exact methods of analysis.
In this spirit, we turn now to an investigation of the quasibound state for the simplest
non-trivial potential—a delta function well.

The delta well is described by the potential functionV (x) = −Sδ(x), with S > 0 a
parameter measuring the strength of the well. In the absence of an electric field, there is
just one bound state with energyE0 = −mS2/2h̄2. For E > 0, the quasibound state is
given by equation (16) which, in this case, reduces to the algebraic equation

9E(x) = −SGE(x, 0; 0)9E(0).

Solutions exist only for those energiesE satisfying 1 = −SGE(0, 0; 0) or, using the
expression (15) forGE(x, x

′; 0),

1= S α2

|qE |e0(z0)Ai(−z0). (21)

Here z0 = z|x=0 = αE/qE . Even in this simple example, we must resort to graphical or
numerical techniques to obtain the quasidiscrete energies. There are, however, two limiting
cases which can be handled analytically.
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The first is the realm of weak fields. AsE → 0, E → E0(< 0) andz0→ −∞. Thus,
we may employ the asymptotic expansions for Ai(−z) ande0(z) ∼ πBi(−z) to obtain [6]

e0(z)Ai(−z) ∼ 1

2
√
z

(
1+ 5

32

1

z3

)
+O

(
1

z5

)
.

With some manipulation, equation (21) can be brought to the more transparent form√
E

E0
= 1− 5

32

h̄2

2m

(qE)2
E3
+O(E4)

from which the zeroth approximationE ≈ E0 readily emerges. Substituting this back into
the right-hand side of the equation yields the next order approximant

E ≈ E0− 5

16

h̄2

2mE2
0

(qE)2. (22)

In equation (22) we recover the result of Rayleigh–Schrödinger perturbation theory carried
to second order inE . (No linear term arises due to the reflection symmetry of the potential.)
The development is clearly asymptotic in the electric field strength.

We can also obtain strong field results by observing thatf (z0) = e0(z0)Ai(−z0) is
bounded for allz0. Thus, the equality in equation (21) can be maintained only if the field
strength is less than some critical valueEB. For E > EB no solution exists; the electric
field has destroyed the quasibound state. Moreover, the argument implies that destruction
obtains for that value ofz0 which makesf (z0) a maximum, and this occurs forz0 = 0.
Noting that

f (0) = e0(0)Ai(0) = 2π

9

31/6

02(2/3)
= 0.457 240 39. . . (23)

we find from equation (22) and (23) the critical fieldEB:

|qEB| =
(

2π

9

)3 31/2

06(2/3)

(
2m

h̄2

)2

S3. (24)

Since z0 = 0 here, we see also thatE(EB) = 0. This value forE(EB) is reasonable,
since then the bound charge has surely acquired sufficient energy to escape the ‘pull’ of its
confining well.

For general computation, it is advantageous to rewrite equation (21) in parametric form,
usingz0 as the parameter:

E

|E0| = 4z0f
2(z0)

E
EB
= f 3(z0)

f 3(0)
. (25)

These last equations are very convenient to use. For each value ofz0 we find E from
the first of equations (25) andE from the second. The full curveE(E) is generated by
allowing z0 to range from minus infinity to zero. Indeed, for the delta function well, the
entire effect of the electric field on the quasidiscrete levels can be neatly summarized in
one graph (figure 1), withE0 and EB serving merely to fix the scales appropriately. The
asymptotic formula equation (22), which can be expressed as

E

|E0| = −1− 20f 6(0)

( E
EB

)2
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Figure 1. The quasidiscrete energyE(E) for the delta function well, in units of the binding
energy|E0|. The electric field strengthE is recorded in units of the breakdown fieldEB. (a) Full
curve, showing level termination atE = EB. (b) The weak field regime, showing the comparison
with the result of perturbation theory carried to second order inE .

is shown in figure 1(b) for comparison. Even on this expanded scale, the two curves are
nearly indistinguishable forE . 0.15EB; beyond this the true curve turns rapidly upward
and terminates atE = EB, in agreement with our earlier remarks. In practical applications,
the perturbation result fares badly only above electric fieldsE ∼ 107 V cm−1.

Nevertheless, the strong field regime is one of genuine theoretical interest, encompassing
as it does the destruction of the quasibound state. Consider the behaviour of the induced
dipole momentP , which arises because the electric field distorts the (initially symmetric)
charge ‘cloud’. For our delta function model we must calculate

P = 〈qx〉 = 〈9E|qx|9E〉
〈9E|9E〉 (26)

for the quasibound state|9E〉. In coordinate space equation (26) becomes a ratio of two
divergent integrals since the quasibound state, being embedded in a continuum, is not
square-integrable. Fortunately, we may avoid these unpleasantries by appealing to the
Hellmann–Feynman Theorem [9], which allows us to write

P(E) = −∂E
∂E (27)

with E(E) the energy of the quasibound state. Equation (27) makes the study of the dipole
moment an easy task. For weak fields, equation (22) shows thatP(E) depends linearly on
E ; the coefficient of proportionality

5

16

q2h̄2

mE2
0

is the polarizability of the delta well.
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Figure 2. The induced dipole momentP(E) for the delta function well. Polarization reversal
occurs forE = 0.15EB, whereP(E) becomes zero.P(E) diverges forE = EB (not shown).

In stronger fieldsP(E), like E(E), must be determined numerically. Using
equations (25), we obtain

P = −∂E/∂z0

∂E/∂z0
= −4|E0|f 3(0)

3EB

(
2z0

f (z0)
+ 1

f ′(z0)

)
. (28)

Here as before,f (z0) = e0(z0)Ai(−z0) and prime (′) denotes differentiation with respect to
the argument. Again,z0 parametrizes the functional dependenceP(E), with E still given
by the second of equations (25). The resulting curve, with an appropriate scale adjustment,
is figure 2.

P(E) diverges atEB, sincez0 = 0 is a point of zero slope forf (z0). Thus, atEB the
average position〈x〉 becomes infinite; the system has been literally torn apart by the electric
field! The implication is inescapable: forE = EB, electrical breakdown has occurred, and
EB should be identified with the breakdown field. In the neighbourhood ofEB, z0 is small
and we can approximate

P ≈ −4|E0|f 3(0)

3EBf ′′(0)
1

z0

E − EB

EB
≈ 3f ′′(0)

2f (0)
z2

0.

Eliminating z0 from this pair shows thatP(E) diverges atEB like (EB − E)−1/2. Moreover,
sincef ′′(0) is negative (z0 = 0 is a maximum forf (z0)), P(E) is less than zeroin these
strong fields; the system undergoes apolarization reversalprior to electrical breakdown!
Polarization reversal is likely to be an artifact introduced by the delta function singularity;
indeed, it is easy to see why the delta function model must exhibit such a peculiarity. We
have already argued that the value zero for the energyE(EB) at breakdown is reasonable.
Add to this the observation that the quasidiscrete level is initially depressed (as shown by
perturbation theory) and the conclusion is inescapable: the curveE(E) must pass through
a minimum. Thus,P(E) = −∂E/∂E returns to zero and thereafter changes sign.

Finally, we show as figure 3 the quasibound wavefunctions at several important field
values. For a fixed electric field, all well configurations are incorporated into a single graph
by plotting9E(x) versus the dimensionless variableκx, whereκ is the decay length of the
unperturbed bound state(κ2 = 2m|E0|/h̄2). The wavefunctions, normalized as9E(0) = 1,
can be written

9E(x) = Ai(−z)
Ai(−z0)

x 6 0

= E0(z0)

f (z0)
Ai(−z)+ π

e0(z0)
Bi(−z) x > 0 (29)
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Figure 3. The quasibound state wavefunctionψE(x) of the delta well for selected electric
field values. (a) For E ≈ EB/50 the wavefunction is indistinguishable from the unperturbed
bound state. (b) The wavefunction just prior to polarization reversal,E = 0.15EB. (c) The
wavefunction atE = EB, where complete electrical breakdown is attained.

with z = z0+2f (z0)κx. Figure 3(a) shows the wavefunction forE ≈ EB/50; in these weak
fields it is indistinguishable from the unperturbed bound state9E(x) = exp(−κ|x|). The
wavefunction just prior to polarization reversal is illustrated in figure 3(b). At this point,
some delocalization is noticeable, although features of the bound state still predominate.
In contrast, no trace of a localized state remains in figure 3(c), where complete electrical
breakdown has been attained.

4. Singular behaviour of the dipole moment near breakdown

For the delta well of section 3, we found a quasibound state continuously connected with
the lone bound state whose disappearance at the critical fieldEB was accompanied by a
dipole momentP(E) diverging atEB like (EB − E)−1/2. In this section we show that this
singular behaviour ofP(E) nearEB is universal, independent of the details of the interaction
potentialV (x).

The argument proceeds by using the relationE0(z) = e0(z) − πBi(−z) to rewrite
equation (16) as a Volterra integral equation

9(z) = C α

qE Ai(−z)+ α

qE

∫ z

−∞
dz′K(z, z′)9(z′)

where9(z) ≡ 9E(x(z)). The kernelK(z, z′) and constantC are given by

K(z, z′) = π [Ai (−z)Bi(−z′)− Bi(−z)Ai(−z′)]VE(z
′)

C = −
∫ ∞
−∞

dze0(z)VE(z)9(z)

with VE(z) ≡ V (x(z)). Iteration generates the formal solution9(z) = Cφ(z) where

φ(z) =
∞∑
n=0

(
α

qE

)n+1

φn(z)
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Figure 4. Sketch of the ‘eigensurface’S(E, E) (shaded region) for a general potential energy
V (x). The quasidiscrete energiesE(E) are given by the intersection of this surface with the
plane atS = 1. The ‘smoothness’ ofS(E, E) implies that level termination is accompanied by
a divergent dipole moment.

φn(z) =
∫ z

−∞
dz′K(z, z′)φn−1(z

′) φ0(z) = Ai(−z). (30)

The equation for the quasidiscrete energies follows from the definition ofC:

1= −
∫ ∞
−∞

dze0(z)VE(z)φ(z). (31)

It is enlightening to regard the preceding equation as the intersection of the ‘eigensurface’

S(E, E) = −
∫ ∞
−∞

dze0(z)VE(z)φ(z) (32)

with the planeS = 1. In the discussion to follow, we assumeS(E, E) is ‘smooth’ in the
region of interest, i.e. thatS(E, E) and its first derivatives are continuous. The validity of
this assumption, as well as the manipulations leading to equation (30) are justified ifV (x)

is continuous and dV/dx vanishes at infinity faster than|x|−3/2. With the same restrictions,
it can be shown thatS(E, E) becomes arbitrarily small forE sufficiently large, thereby
guaranteeing through equation (31) that each quasidiscrete level must terminate at some
field value. These demands onV (x) are surely excessive, as the example of section 3
indicates; nonetheless they do admit a broad and important class of potentials.

The ‘smoothness’ ofS(E, E) furnishes a direct link between the destruction of a
quasibound state (via level termination) and the divergence of its dipole moment. To see
this, we must interpret the termination of a quasidiscrete level in terms of the topological
properties of the eigensurface. This can be done by visualizing the intersection ofS(E, E)
with a plane of constantE as this plane advances in the direction of increasing field (figure 4).
As E grows, the curve of intersection varies, but the smoothness of the eigensurface implies
that, for the critical fieldEB, the curveS(E, EB) possesses a maximum or minimum at the
corresponding ionization energyEB = E(EB):

∂S

∂E
= 0

∂2S

∂E2
6= 0 at (EB, EB). (33)

Furthermore, we can assume
∂S

∂E 6= 0 at (EB, EB) (34)

for if this were not so, the surfaceS(E, E) would exhibit a local peak, valley, or saddle
point at (EB, EB). A peak or valley implies level termination with adecreaseas well as
an increase inE , and so may be excluded. A saddle point describeslevel crossing, and is
forbidden by the assumed non-degeneracy of the energy spectrum. Also, we note that the
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signs of∂2S/∂E2 and∂S/∂E , when evaluated at(EB, EB), are correlated: ifS(E, EB) has
a maximum (minimum) atE = EB, then ∂S/∂E evaluated at(EB, EB) must be negative
(positive) for level termination to occur. It follows that∂2S/∂E2 and∂S/∂E are either both
positive or both negative, and that their ratio is always positive.

The divergence of the dipole moment at breakdown is now readily demonstrated. In
the solution planeS(E, E) = 1, we have dS = ∂S/∂E dE + ∂S/∂E dE = 0. Thus,

P = −∂E
∂E =

∂S

∂E

/
∂S

∂E

and by conditions (33) and (34),P diverges at the critical point(EB, EB). The form of the
divergence follows directly from a Taylor expansion ofS(E, E) around(EB, EB).

Remembering thatS(EB, EB) = 1, we find

E(E) = EB ± β(EB − E)1/2+O(EB − E) (35)

where

β2 = 2
∂S

∂E

/
∂2S

∂E2
evaluated at(EB, EB) (36)

is a positive number by our previous remarks. Thus, near the critical fieldEB, the dipole
momentP(E) = −∂E/∂E diverges as

P(E) = ±β
2
(EB − E)−1/2+O(1). (37)

Let us pause for a moment to reflect upon this result. Statements (33)–(37) are just a
clumsy analytical way of saying what is geometrically obvious: given that the solution curve
E(E) originates from the intersection of a plane with a smooth surface, then any solution
which terminates must do so with infinite slope (cf figure 4). The type of singularity
reflects the dimensionality of the surface—in this case two. Thus, level termination and the
dimensionality of the eigensurface alone dictate the prediction of equation (37).

5. Conclusion

We have presented a technique for calculating quasibound states of a weakly quantized
system for which the energy spectrum is non-degenerate and unbounded, above and below.
Besides satisfying Schrödinger’s equation, the quasibound states are subject to the added
constraint imposed by equation (9), namely∫ ∞

−∞
dE〈E|ψE〉 = 0.

Equivalently, quasibound states may be sought as solutions to a homogeneous integral
equation, using the Green’s operator of equation (10) in the special caseτ0 = 0.
More generally,τ0 labels representations; all non-zero choices forτ0 result in alternative
descriptions of the weakly quantized system in terms of localized states that are not truly
stationary, but decay over time. The conventional treatment corresponds to the case
τ0 = −∞.

In the context of electric fields, examination of the quasibound states leads to an
improved understanding of electrical breakdown in matter. From the example of a charge
bound by a delta function well and subject to a uniform electric field, we are able to arrive
at the following generalizations:
• quasibound states cease to exist for electric fields larger than some critical valueEB,

identified with the breakdown field for the system.
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• The associated quasidiscrete energy level terminates at the value of the breakdown
field.
• Termination of a quasidiscrete level is invariably accompanied by a dipole moment

which diverges at breakdown as(EB − E)−1/2.
Several points still require clarification. How quasibound states may be realized in

practice remains an open question. It is tempting to think that theadiabatic growth of
E starting from a bound state may result in evolution to the corresponding quasibound
state, but at present this is only conjecture. Other, more straightforward, extensions of the
present work are also indicated. These include the treatment of weakly quantized systems
with fundamentally different spectra (e.g. bounded below but not above), as well as the
possibility of generalizing the method from one to three space dimensions. Both will be
taken up in future publications.

References

[1] Oppenheimer J R 1928Phys. Rev.31 80
[2] Zener C 1934Proc. R. Soc.A 145 529
[3] Lukes T and Somaratna K T S 1969J. Phys. C: Solid State Phys.2 586
[4] Moyer C A 1973J. Phys. C: Solid State Phys.6 1461
[5] Landau L D and Lifshitz E M 1977Quantum Mechanics3rd edn (Oxford: Pergamon) section 24
[6] Abramowitz M and Stegun I A 1965 Handbook of Mathematical Functions(New York: Dover) pp 446–8
[7] Tumarkin S A 1959J. Appl. Math. Mech.23 1556
[8] Moyer C A 1970Ann. Phys., NY61 242
[9] Merzbacher E 1970Quantum Mechanics2nd edn (New York: Wiley) p 442


